Feature extraction from higher-lag autocorrelation coefficients for robust speech recognition

نویسندگان

  • Benjamin J. Shannon
  • Kuldip K. Paliwal
چکیده

In this paper, a feature extraction method that is robust to additive background noise is proposed for automatic speech recognition. Since the background noise corrupts the autocorrelation coefficients of the speech signal mostly at the lowertime lags, while the higher-lag autocorrelation coefficients are least affected, this method discards the lower-lag autocorrelation coefficients and uses only the higher-lag autocorrelation coefficients for spectral estimation. The magnitude spectrum of the windowed higher-lag autocorrelation sequence is used here as an estimate of the power spectrum of the speech signal. This power spectral estimate is processed further (like the well-known Mel frequency cepstral coefficient (MFCC) procedure) by the Mel filter bank, log operation and the discrete cosine transform to get the cepstral coefficients. These cepstral coefficients are referred to as the autocorrelation Mel frequency cepstral coefficients (AMFCCs). We evaluate the speech recognition performance of the AMFCC features on the Aurora and the resource management databases and show that they perform as well as the MFCC features for clean speech and their recognition performance is better than the MFCC features for noisy speech. Finally, we show that the AMFCC features perform better than the features derived from the robust linear prediction-based methods for noisy speech. 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MFCC computation from magnitude spectrum of higher lag autocorrelation coefficients for robust speech recognition

Processing of the speech signal in the autocorrelation domain in the context of robust feature extraction is based on the following two properties: 1) pole preserving property (the poles of a given (original) signal are preserved in its autocorrelation function), and 2) noise separation property (the autocorrelation function of a noise signal is confined to lower lags, while the speech signal c...

متن کامل

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

Robust Feature Vector Set Using Higher Order Autocorrelation Coefficients

In this paper, a feature extraction method that is robust to additive background noise is proposed for automatic speech recognition. Since the background noise corrupts the autocorrelation coefficients of the speech signal mostly at the lower orders, while the higher-order autocorrelation coefficients are least affected, this method discards the lower order autocorrelation coefficients and uses...

متن کامل

Robust Features for Noisy Speech Recognition using MFCC Computation from Magnitude Spectrum of Higher Order Autocorrelation Coefficients

Noise robustness is one of the most challenging problem in automatic speech recognition. The goal of robust feature extraction is to improve the performance of speech recognition in adverse conditions. The mel-scaled frequency cepstral coefficients (MFCCs) derived from Fourier transform and filter bank analysis are perhaps the most widely used front-ends in state-of-the-art speech recognition s...

متن کامل

Extended weighted linear prediction using the autocorrelation snapshot - a robust speech analysis method and its application to recognition of vocal emotions

Temporally weighted linear predictive methods have recently been successfully used for robust feature extraction in speech and speaker recognition. This paper introduces their general formulation, where various efficient temporal weighting functions can be included in the optimization of the all-pole coefficients of a linear predictive model. Temporal weighting is imposed by multiplying element...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Speech Communication

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2006